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ABSTRACT  

Adaptive allocation of resources based on variations in workload, improves the overall resources 

utilization of the system. In this paper we have described the impact of prognostication framework that 

captures the changes in workload demand, on performance of the server. This framework provides a cost 

effective allocation of resources which is beneficial for both cloud user as well as cloud provider. Here 

the option of an application specific prognostication engine may be argued but it is a challenge for an 

application developer to develop an application specific prognostication engine. However, if the IaaS 

framework provides some provision for a standard prognostication engines many applications will 

benefit. Therefore a prognostication engine generic enough like this will be able to cater many 

applications needs. 
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INTRODUCTION 

Enabling elastic resource allocation in IaaS is useful for applications  with highly variable workload.  

Current provisioning techniques in IaaS perform static allocation of resources which sometimes results 

in under-allocation of resources leading to performance degradation or over-allocation of resources 

leading to wastage of resources making user pay for resources that might not be used by the application. 

The main challenge is to allocate the resources in such a way that  they are not over-allocated and at 

the same time ensure that  performance doesn’t get degraded. In order to achieve this, a forecast based 

approach must be used that predicts the user workload and takes an appropriate resource allocation 

decision a priori. 

 

In our work a prognostication  engine based  on a cost model is introduced  into  the  core  layer  of 

the Iaas architecture. As indicated  earlier,  the  main  function  of this  component is to  host  a 

prediction  model for an application  hosted  on the  cloud.  It  generates  the appropriate workload 

prediction  for the next  scheduling cycle that  is calculated  using a cost model, which is then 

translated into appropriate resource requirement using Resource manager.    

 

The proposed prognostication framework in our work consists of mainly two parts:  1) Prognostication 

engine, and 2) Cost Model.  Prognostication engine predicts the user workload dynamically based on 

the past usage pattern which is then translated into resource requirement. It produces forecast 

bounds for a given confidence interval.  Cost model further modifies the forecast in such a way that it 

tries to obtain the best tradeoff between over-allocation of resources and underperformance of 

application ( SLA penalty). It does so by selecting the upper bound of the forecast and finding the 

appropriate value of confidence interval which produces a minimum positive value of effective cost.   

 

METRICS FOR SERVER PERFORMANCE 

 

REQUESTS RATE 

This is the evaluation of how many requests per second are coming to a server. In other      words, this 

metric is called Average Load and it allows one to understand that under what load the web application is 

currently working. Usually, this is calculated as a count of the requests received during a measurement 

period, where the period is represented in seconds.  
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 ERROR RATES 

Generally some errors may occur when processing requests, especially when under a big load. The Error 

Rate usually reflects how many response HTTP status codes indicate an error on the server including the 

requests that never get a response (timed out) knowing that web servers return an HTTP Status Code in 

the response header. Normal codes are usually 200 (OK) or something in the 3xx range, indicating a 

redirect on the server. Error rate is calculated as a percentage of problem requests relative to all requests. 

Common error codes are 4xx and 5xx, which mean the web server knows it has a problem fulfilling that 

request. Error Rate is a significant metric because it measures “performance failure” in the application 

and tells how many failed requests have occurred at a particular point in time. Normally, no one can 

define the tolerance for Error Rate in their web application. Some consider an Error Rate of less than 1% 

successful. However, normally one must try to minimize possible errors in order to avoid performance 

problems, and constantly work to eliminate them. 

 

AVERAGE RESPONSE TIMES (ART) 

 By measuring the duration of every request/response cycle, it will be possible to evaluate how long it 

takes the target web application to generate a response. The ART takes into consideration every round 

trip request/response cycle during a monitoring period and calculates the mathematical mean of all the 

response times. The resulting metric is a reflection of the speed of the web application which is perhaps 

the best indicator of how the target site is performing, from the users’ perspective. The recommended 

standard unit of measurement for ART is milliseconds. 

 

PEAK RESPONSE TIMES (PRT) 

 PRT measures the longest round trip of request/response cycles. Generally, the PRT shows that at least 

one of the resources is potentially problematic which is leading to increase in response time. But, when 

the ART and PRT start becoming comparable, that indicates that undoubtedly there is a problem in the 

server. Sometimes it may reflect an anomaly in the application, or may be due to expensive database 

queries, etc. The standard measurement unit of PRT is recommended to be milliseconds. 

 

UPTIME 

 Uptime is the amount of time that a server has stayed up and running properly. It reflects the reliability 

and availability of the server and, obviously, this value should be as large as possible. The value can be 

calculated as an absolute value or as a percentage of actual server uptime to ideal server uptime. For 

example, if a server is started on Aug 1, 2018 and checked for the uptime exactly 31 days later i.e. on 

Aug 31, 2018, then the whole duration is 31 days or 2,678,400 seconds. If the server has been stopped 

during that period for 1,000 seconds, then the uptime percentage (availability) will be 100 * (1 – (1000 / 

2678400)) = 99.963%. Usually, if your server is in production, a value less than 99% should lead to 

attention and less than 95% to troubling.  

 

CPU UTILIZATION 
 CPU Utilization is the amount of CPU time used by the web application while processing a request. 

Usually, it is the percentage of CPU usage that is calculated, which indicates how much of the 

processor’s capacity is currently in use by your application. When the percentage of CPU usage begins to 

max out at 100%, additional action may need to be taken because that points to the existence of some 

problem in your application, or to a capacity deficiency of the host machine. 

 

MEMORY UTILIZATION 

 Memory Utilization refers to the amount of memory used by a web application while processing a 

request. Usually, it is calculated as the process’s percentage of memory utilization, which is a ratio of the 

Resident Set Size to the physical memory whereas the Resident Set Size (space for text, data, stack) is a 

real occupied memory size. 

 

THE COUNT OF THREADS 
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 As usual, a web application can generate a lot of threads to process requests. The number of threads is an 

important metric because the number of threads per process is normally limited by the system. So if an 

application generates too many threads then it can be an indicator that there is a problem in the 

application. Obviously, the count of existing threads is proportional to the load and inversely proportional 

to the processing time of the requests. 

 

THE COUNT OF OPEN FILES DESCRIPTORS 
 A file descriptor is an object that a process uses to read or write to an open file and to open network 

sockets. Generally, an operating System places limits on the number of file descriptors that a process may 

open. The non-availability of file descriptors can cause a wide variety of symptoms which are not always 

easily traced back to. The Open Files Descriptors (OFD) provides a count of the total number of file 

descriptors that are currently allocated and open for processing. The percentage of the total number of 

open file descriptors with respect to the maximum allowed count of descriptors for processing is a good 

metric for evaluating the health of a web application. 

 

REQUEST RATE AND RESPONSE TIME  

In our work, we have considered I/O workloads as they have the potential to exercise most of the 

resources of a system.  They provide a useful case study as they are highly prevalent workloads in clouds 

[2]. I/O workloads are characterized by spurts of CPU usage followed by I/O activity.  Examples of I/O 

workloads are read/write operations to disk, interactive network I/O workloads such as request-response 

sequence of web server or mail server etc..  The request rate is the number of requests per unit time. In 

this work, since the scheduling decisions are assumed to be taken on a per hour basis, request rate 

represents number of requests per hour. Hence the metric that is used to measure the performance of the 

server is the response time that i t  takes to service these requests. For each request, there is a response 

time associated.  

 

SERVER PERFORMANCE USING RESPONSE TIME 

In this section we discuss the SLA penalty occurred due to under-performance of the application, 

when the resources are allocated based on prediction.   Basically, when the resources are under-

allocated, SLA violations occur because of increase in response time of the system.  Hence, to 

observe the SLA violation in the form of a penalty, response time of the system needs to be 

measured when the resources are allocated based on the prediction and the system receives the 

actual workload.  Once the system behavior is known, it can then be used to find the response 

time of the system at each point where the allocated resources based on prediction are not sufficient 

to fulfill the demand. 

 

RESPONSE TIME WITH UNPREDICTED LIMITED RESOURCES 

To find the system’s performance behavior, response time of the system is measured after providing 

limited resources to the system without predicting the resource usage.  For a  web server application, 

response time of the system is calculated while restricting CPU allocated to the VM and CPU limit 

is varied from 0 to 80% for different request rates.  In this work, it is assumed that the other VM 

resources including memory, network bandwidth etc. and hypervisor resources are not constrained.  

However, these can also be the reason for SLA violations. That means the SLA violation due to these 

is not considered here as it not within the scope of this study. 

 

Figure 1 shows the response times observed at different request rates,  the VM CPU is restricted  

from 2% to  80%.  Initially r esponse time is under the defined performance SLA limit (where SLA 

violations do not occur, generally, which is, approximately 70 ms for web server application). Till a 

certain point, fo r  example, at about 5000 requests per hour, response time is well under 150 ms 

after about 40% of VM CPU allocation. This point is named as Safe Resource Allocation Point 

(SRAP).  This SRAP increases with increase in the request rate as can be observed from the Figure 

1. 
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RESPONSE TIME USING PREDICTED RESOURCES 

Using the response time behavior of the system under restricted resources, the response time of the 

system for simulated workload can be calculated if the predicted resources are allocated to the 

system.  When the resources are allocated using the predicted value (0% confidence interval), the 

response time behavior for all of the cases is shown in Fig 2.  The x-axis denotes request rate 

(workload) and y-axis denotes response time.  Here, dotted l ine  denotes the safe response time for 

the system corresponding to that applicat ion.  Dark line represents response time of the system 

when the resources are allocated based on prediction. All of the points where the response time 

exceeds the safe limit correspond to SLA violation points.  SLA penalty st art s  increasing if the 

response time of the system increases beyond the safe limit and saturates after a long point where 

in the service becomes meaningless to the user. 

 
 

 

 

 

Minimizing Effective Cost 

Effective cost can be found as following: 

     

   CEffective 
=
 COver  allocation(α  ) 

     

   And     COver  allocation = α  * ER 

 

Here, E R  denotes the extra resources allocated than required.  As w e  ha ve  discussed earlier, the 

upper bound of the forecast for a given confidence interval is used to provision resources. With the 

increase in confidence interval, the upper bound of the forecast increases. This leads to increase in 

over-allocation cost for all of the points where allocation is more than the required resources. On the 

Fig. 1 Response Time with varying request rates with 

unpredicted resources 

Fig. 2 Response Time with varying request rates with predicted 

resources 
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other hand, for all of the points where allocation is less than the required resources, increasing the 

confidence interval decreases SLA penalty.  Hence, it turns out that the effective cost function is the 

function of confidence interval. The objective is to find the minimum effective cost or a value of 

confidence interval which minimizes the effective cost. 

 
        

 

 
 

 

 

Figure  3 depicts  the  variation  of effective cost function  with  confidence interval  for our  data  

using  different  values of ER. The  x-axis  denotes the  confidence interval  values ranging  from 0 to  

99% and  y-axis denotes  the  value of effective cost function  derived  for the  system  when 

resources  are  allocated  using the  upper bound  of the  forecast at  corresponding  confidence 

intervals. In fig 4 it has been shown that at higher confidence interval, SLA violations will be less (i.e. 

less SLA penalty) and over-allocation of resources will be more.  Hence, one can prioritize SLA 

violations over over-allocation and vice-versa based on the user’s requirement. 

 

IMPROVEMENT USING THE PROGNOSTICATION 

FRAMEWORK 

Using the proposed prognostication framework, the resources can be allocated as per the upper 

bound of the confidence interval which minimizes the effective cost.  This section identifies the 

improvement in terms of reduction in the resource allocation while keeping the performance intact, 

using the proposed framework. 

 

• Reduction in the resource allocation: The reduction in the resource allocation is achieved 

using the proposed prognostication framework. An improvement of almost 50% is observed in terms 

of resource utilization efficiency depending on the choice of confidence interval. 

 

Fig. 3 Cost Function (over-allocation cost) with different 

confidence intervals 

Fig. 4 Cost Function SLA Penalty (under-

performance of application) with different 

confidence intervals 
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• Few SLA violations: SLA violations occur at those points where the allocated resources are less 

than the required resources, since the response time of the server can reach beyond the specified safe 

limit.  These are mostly the points where a sudden hike is observed in the workload and which was 

not in the past patterns from history. Using the dynamic allocation by proposed framework, the 

SLA violations are very less (about 3.85%).   

 

Hence, using the proposed prognostication framework, significant improvement in the terms of 

efficient resource allocation has been observed keeping the SLA violations at a minimal level. It can 

be noted that the improvement in the resource allocation and SLA violations are related to each other 

i.e. depend on the choice of value of α . Table  1 shows the improvement in resource utilization and 

SLA violations at the confidence intervals at which the effective cost function is minimized for all 

of the cases.   In summary, predicting workload to obtain resources close to requirement, and minimum 

SLA violations, conflicts with one another and needs to obtain the best tradeoff between the two.  

However, both can be achieved simultaneously only when the prediction accuracy is 100% which is 

practically difficult to achieve. 

 

 

Workload Improvement 

utilization 

in SLA Violations 

Web Server (Gaussian  Process 

with periodic covariance function ) 

112.6528%  6.21118% 

Web Server (Gaussian  Process 

with linear periodic covariance 

function ) 

 

112.7945%  6.29016% 

 

Table 1: Improvement using proposed prognostication framework 

 

 

CONCLUSION 

Predicting the varying workload and obtaining the resource requirement which is close to the actual 

requirement in the  current IaaS  architecture along with  preserving performance  of the applications  

hosted  is the main idea of our work.  The cost model aims at providing the optimal balance between the 

two opposite goals of improving resource utilization and preserving application’s performance. 

 

This paper provides the cost model and evaluates the proposed prognostication framework in [1]. 

Using the simulation, the response time of the system is tested when the resources are allocated as per 

the forecast.  Further, using different values of confidence interval, effective cost is found for the system 

and that value is chosen for the confidence interval which minimizes the effective cost. 

 

The results show the significant improvement in the resource utilization achieved using adaptive 

provisioning of resources based on variations in workload, over the static allocation that  is used 

currently  in IaaS clouds.  At the same time, it ensures the guaranteed performance to the user by 

restricting SLA violations to a minimum. 
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