
 International Journal of Engineering Research ISSN: 2348-4039

 & Management Technology

 July-2018 Volume-5, Issue-4

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 44

IMPACT OF PROGNOSTICATION FRAMEWORK ON SERVER PERFORMANCE

Monika Sainger Prof.(Dr.) Sarvottam Dixit

Research Scholar (CSE) Advisor to Chairman

Mewar University, Rajasthan Mewar University, Rajasthan

ABSTRACT

Adaptive allocation of resources based on variations in workload, improves the overall resources

utilization of the system. In this paper we have described the impact of prognostication framework that

captures the changes in workload demand, on performance of the server. This framework provides a cost

effective allocation of resources which is beneficial for both cloud user as well as cloud provider. Here

the option of an application specific prognostication engine may be argued but it is a challenge for an

application developer to develop an application specific prognostication engine. However, if the IaaS

framework provides some provision for a standard prognostication engines many applications will

benefit. Therefore a prognostication engine generic enough like this will be able to cater many

applications needs.

KEYWORDS: Prognostication Engine, variable workload, cost-effective allocation.

INTRODUCTION

Enabling elastic resource allocation in IaaS is useful for applications with highly variable workload.

Current provisioning techniques in IaaS perform static allocation of resources which sometimes results

in under-allocation of resources leading to performance degradation or over-allocation of resources

leading to wastage of resources making user pay for resources that might not be used by the application.

The main challenge is to allocate the resources in such a way that they are not over-allocated and at

the same time ensure that performance doesn’t get degraded. In order to achieve this, a forecast based

approach must be used that predicts the user workload and takes an appropriate resource allocation

decision a priori.

In our work a prognostication engine based on a cost model is introduced into the core layer of

the Iaas architecture. As indicated earlier, the main function of this component is to host a

prediction model for an application hosted on the cloud. It generates the appropriate workload

prediction for the next scheduling cycle that is calculated using a cost model, which is then

translated into appropriate resource requirement using Resource manager.

The proposed prognostication framework in our work consists of mainly two parts: 1) Prognostication

engine, and 2) Cost Model. Prognostication engine predicts the user workload dynamically based on

the past usage pattern which is then translated into resource requirement. It produces forecast

bounds for a given confidence interval. Cost model further modifies the forecast in such a way that it

tries to obtain the best tradeoff between over-allocation of resources and underperformance of

application (SLA penalty). It does so by selecting the upper bound of the forecast and finding the

appropriate value of confidence interval which produces a minimum positive value of effective cost.

METRICS FOR SERVER PERFORMANCE

REQUESTS RATE

This is the evaluation of how many requests per second are coming to a server. In other words, this

metric is called Average Load and it allows one to understand that under what load the web application is

currently working. Usually, this is calculated as a count of the requests received during a measurement

period, where the period is represented in seconds.

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org July- 2018 Volume-5, Issue-4 www.ijermt.org

Copyright@ijermt.org Page 45

 ERROR RATES

Generally some errors may occur when processing requests, especially when under a big load. The Error

Rate usually reflects how many response HTTP status codes indicate an error on the server including the

requests that never get a response (timed out) knowing that web servers return an HTTP Status Code in

the response header. Normal codes are usually 200 (OK) or something in the 3xx range, indicating a

redirect on the server. Error rate is calculated as a percentage of problem requests relative to all requests.

Common error codes are 4xx and 5xx, which mean the web server knows it has a problem fulfilling that

request. Error Rate is a significant metric because it measures “performance failure” in the application

and tells how many failed requests have occurred at a particular point in time. Normally, no one can

define the tolerance for Error Rate in their web application. Some consider an Error Rate of less than 1%

successful. However, normally one must try to minimize possible errors in order to avoid performance

problems, and constantly work to eliminate them.

AVERAGE RESPONSE TIMES (ART)

 By measuring the duration of every request/response cycle, it will be possible to evaluate how long it

takes the target web application to generate a response. The ART takes into consideration every round

trip request/response cycle during a monitoring period and calculates the mathematical mean of all the

response times. The resulting metric is a reflection of the speed of the web application which is perhaps

the best indicator of how the target site is performing, from the users’ perspective. The recommended

standard unit of measurement for ART is milliseconds.

PEAK RESPONSE TIMES (PRT)

 PRT measures the longest round trip of request/response cycles. Generally, the PRT shows that at least

one of the resources is potentially problematic which is leading to increase in response time. But, when

the ART and PRT start becoming comparable, that indicates that undoubtedly there is a problem in the

server. Sometimes it may reflect an anomaly in the application, or may be due to expensive database

queries, etc. The standard measurement unit of PRT is recommended to be milliseconds.

UPTIME

 Uptime is the amount of time that a server has stayed up and running properly. It reflects the reliability

and availability of the server and, obviously, this value should be as large as possible. The value can be

calculated as an absolute value or as a percentage of actual server uptime to ideal server uptime. For

example, if a server is started on Aug 1, 2018 and checked for the uptime exactly 31 days later i.e. on

Aug 31, 2018, then the whole duration is 31 days or 2,678,400 seconds. If the server has been stopped

during that period for 1,000 seconds, then the uptime percentage (availability) will be 100 * (1 – (1000 /

2678400)) = 99.963%. Usually, if your server is in production, a value less than 99% should lead to

attention and less than 95% to troubling.

CPU UTILIZATION
 CPU Utilization is the amount of CPU time used by the web application while processing a request.

Usually, it is the percentage of CPU usage that is calculated, which indicates how much of the

processor’s capacity is currently in use by your application. When the percentage of CPU usage begins to

max out at 100%, additional action may need to be taken because that points to the existence of some

problem in your application, or to a capacity deficiency of the host machine.

MEMORY UTILIZATION

 Memory Utilization refers to the amount of memory used by a web application while processing a

request. Usually, it is calculated as the process’s percentage of memory utilization, which is a ratio of the

Resident Set Size to the physical memory whereas the Resident Set Size (space for text, data, stack) is a

real occupied memory size.

THE COUNT OF THREADS

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org July- 2018 Volume-5, Issue-4 www.ijermt.org

Copyright@ijermt.org Page 46

 As usual, a web application can generate a lot of threads to process requests. The number of threads is an

important metric because the number of threads per process is normally limited by the system. So if an

application generates too many threads then it can be an indicator that there is a problem in the

application. Obviously, the count of existing threads is proportional to the load and inversely proportional

to the processing time of the requests.

THE COUNT OF OPEN FILES DESCRIPTORS
 A file descriptor is an object that a process uses to read or write to an open file and to open network

sockets. Generally, an operating System places limits on the number of file descriptors that a process may

open. The non-availability of file descriptors can cause a wide variety of symptoms which are not always

easily traced back to. The Open Files Descriptors (OFD) provides a count of the total number of file

descriptors that are currently allocated and open for processing. The percentage of the total number of

open file descriptors with respect to the maximum allowed count of descriptors for processing is a good

metric for evaluating the health of a web application.

REQUEST RATE AND RESPONSE TIME

In our work, we have considered I/O workloads as they have the potential to exercise most of the

resources of a system. They provide a useful case study as they are highly prevalent workloads in clouds

[2]. I/O workloads are characterized by spurts of CPU usage followed by I/O activity. Examples of I/O

workloads are read/write operations to disk, interactive network I/O workloads such as request-response

sequence of web server or mail server etc.. The request rate is the number of requests per unit time. In

this work, since the scheduling decisions are assumed to be taken on a per hour basis, request rate

represents number of requests per hour. Hence the metric that is used to measure the performance of the

server is the response time that i t takes to service these requests. For each request, there is a response

time associated.

SERVER PERFORMANCE USING RESPONSE TIME

In this section we discuss the SLA penalty occurred due to under-performance of the application,

when the resources are allocated based on prediction. Basically, when the resources are under-

allocated, SLA violations occur because of increase in response time of the system. Hence, to

observe the SLA violation in the form of a penalty, response time of the system needs to be

measured when the resources are allocated based on the prediction and the system receives the

actual workload. Once the system behavior is known, it can then be used to find the response

time of the system at each point where the allocated resources based on prediction are not sufficient

to fulfill the demand.

RESPONSE TIME WITH UNPREDICTED LIMITED RESOURCES

To find the system’s performance behavior, response time of the system is measured after providing

limited resources to the system without predicting the resource usage. For a web server application,

response time of the system is calculated while restricting CPU allocated to the VM and CPU limit

is varied from 0 to 80% for different request rates. In this work, it is assumed that the other VM

resources including memory, network bandwidth etc. and hypervisor resources are not constrained.

However, these can also be the reason for SLA violations. That means the SLA violation due to these

is not considered here as it not within the scope of this study.

Figure 1 shows the response times observed at different request rates, the VM CPU is restricted

from 2% to 80%. Initially r esponse time is under the defined performance SLA limit (where SLA

violations do not occur, generally, which is, approximately 70 ms for web server application). Till a

certain point, fo r example, at about 5000 requests per hour, response time is well under 150 ms

after about 40% of VM CPU allocation. This point is named as Safe Resource Allocation Point

(SRAP). This SRAP increases with increase in the request rate as can be observed from the Figure

1.

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org July- 2018 Volume-5, Issue-4 www.ijermt.org

Copyright@ijermt.org Page 47

RESPONSE TIME USING PREDICTED RESOURCES

Using the response time behavior of the system under restricted resources, the response time of the

system for simulated workload can be calculated if the predicted resources are allocated to the

system. When the resources are allocated using the predicted value (0% confidence interval), the

response time behavior for all of the cases is shown in Fig 2. The x-axis denotes request rate

(workload) and y-axis denotes response time. Here, dotted l ine denotes the safe response time for

the system corresponding to that applicat ion. Dark line represents response time of the system

when the resources are allocated based on prediction. All of the points where the response time

exceeds the safe limit correspond to SLA violation points. SLA penalty st art s increasing if the

response time of the system increases beyond the safe limit and saturates after a long point where

in the service becomes meaningless to the user.

Minimizing Effective Cost

Effective cost can be found as following:

 CEffective
=
 COver allocation(α)

 And COver allocation = α * ER

Here, E R denotes the extra resources allocated than required. As w e ha ve discussed earlier, the

upper bound of the forecast for a given confidence interval is used to provision resources. With the

increase in confidence interval, the upper bound of the forecast increases. This leads to increase in

over-allocation cost for all of the points where allocation is more than the required resources. On the

Fig. 1 Response Time with varying request rates with

unpredicted resources

Fig. 2 Response Time with varying request rates with predicted

resources

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org July- 2018 Volume-5, Issue-4 www.ijermt.org

Copyright@ijermt.org Page 48

other hand, for all of the points where allocation is less than the required resources, increasing the

confidence interval decreases SLA penalty. Hence, it turns out that the effective cost function is the

function of confidence interval. The objective is to find the minimum effective cost or a value of

confidence interval which minimizes the effective cost.

Figure 3 depicts the variation of effective cost function with confidence interval for our data

using different values of ER. The x-axis denotes the confidence interval values ranging from 0 to

99% and y-axis denotes the value of effective cost function derived for the system when

resources are allocated using the upper bound of the forecast at corresponding confidence

intervals. In fig 4 it has been shown that at higher confidence interval, SLA violations will be less (i.e.

less SLA penalty) and over-allocation of resources will be more. Hence, one can prioritize SLA

violations over over-allocation and vice-versa based on the user’s requirement.

IMPROVEMENT USING THE PROGNOSTICATION

FRAMEWORK

Using the proposed prognostication framework, the resources can be allocated as per the upper

bound of the confidence interval which minimizes the effective cost. This section identifies the

improvement in terms of reduction in the resource allocation while keeping the performance intact,

using the proposed framework.

• Reduction in the resource allocation: The reduction in the resource allocation is achieved

using the proposed prognostication framework. An improvement of almost 50% is observed in terms

of resource utilization efficiency depending on the choice of confidence interval.

Fig. 3 Cost Function (over-allocation cost) with different

confidence intervals

Fig. 4 Cost Function SLA Penalty (under-

performance of application) with different

confidence intervals

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org July- 2018 Volume-5, Issue-4 www.ijermt.org

Copyright@ijermt.org Page 49

• Few SLA violations: SLA violations occur at those points where the allocated resources are less

than the required resources, since the response time of the server can reach beyond the specified safe

limit. These are mostly the points where a sudden hike is observed in the workload and which was

not in the past patterns from history. Using the dynamic allocation by proposed framework, the

SLA violations are very less (about 3.85%).

Hence, using the proposed prognostication framework, significant improvement in the terms of

efficient resource allocation has been observed keeping the SLA violations at a minimal level. It can

be noted that the improvement in the resource allocation and SLA violations are related to each other

i.e. depend on the choice of value of α . Table 1 shows the improvement in resource utilization and

SLA violations at the confidence intervals at which the effective cost function is minimized for all

of the cases. In summary, predicting workload to obtain resources close to requirement, and minimum

SLA violations, conflicts with one another and needs to obtain the best tradeoff between the two.

However, both can be achieved simultaneously only when the prediction accuracy is 100% which is

practically difficult to achieve.

Workload Improvement

utilization

in SLA Violations

Web Server (Gaussian Process

with periodic covariance function)

112.6528% 6.21118%

Web Server (Gaussian Process

with linear periodic covariance

function)

112.7945% 6.29016%

Table 1: Improvement using proposed prognostication framework

CONCLUSION

Predicting the varying workload and obtaining the resource requirement which is close to the actual

requirement in the current IaaS architecture along with preserving performance of the applications

hosted is the main idea of our work. The cost model aims at providing the optimal balance between the

two opposite goals of improving resource utilization and preserving application’s performance.

This paper provides the cost model and evaluates the proposed prognostication framework in [1].

Using the simulation, the response time of the system is tested when the resources are allocated as per

the forecast. Further, using different values of confidence interval, effective cost is found for the system

and that value is chosen for the confidence interval which minimizes the effective cost.

The results show the significant improvement in the resource utilization achieved using adaptive

provisioning of resources based on variations in workload, over the static allocation that is used

currently in IaaS clouds. At the same time, it ensures the guaranteed performance to the user by

restricting SLA violations to a minimum.

REFERENCES
1. M. Sainger, K.P. Yadav, H.S.Sharma, “Framework for Application Service Behavior Prognostication with Cost-

Effective Provisioning In a Utility Cloud”, Int. Journal of Engineering Research and Application ISSN : 2248-9622,

Vol. 8, Issue3, March2018.

2. D. Mosberger And T. Jin, “Httperf-A Tool For Measuring Web Server Performance,” SIGMETRICS Perform. Eval.

Rev., Vol. 26, No. 3, Pp. 31– 37, Dec 1998. [Online]. Available: Http://Doi.Acm.Org/10.1145/306225. 306235.

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

Email:editor@ijermt.org July- 2018 Volume-5, Issue-4 www.ijermt.org

Copyright@ijermt.org Page 50

3. A. Anand, “Adaptive Virtual Machine Placement supporting performance SLAs” Master’s thesis, Supercomputer

Education and Research Center, Indian Institute of Science, 2013.

4. A. Anand, M. Dhingra, J. Lakshmi, and S. K. Nandy, “Resource usage monitoring for kvm based virtual

machines,” in Proceedings of the 18th annual International Conference on Advanced Computing and

Communications (ADCOM 2012), To Be Published, dec. 2012.

5. M. Dhingra, J. Lakshmi, and S. K. Nandy, “Resource usage monitoring in clouds,”in Proceedings of the 2012
ACM/IEEE 13th International Conference on Grid Computing, ser. GRID ’12. Washington, DC, USA:

IEEE Computer Society, 2012, pp. 184–191. [Online]. Available: http://dx.doi.org/10.1109/Grid.2012.10

6. K. Boloor, R. Chirkova, T. Salo, and Y. Viniotis, “Analysis of response time per- centile service level

agreements in soa-based applications,” in Global Telecommuni- cations Conference (GLOBECOM 2011), 2011

IEEE, Dec. 2011.

7. Y. Mei, L. Liu, X. Pu, S. Sivathanu, and X. Dong, “Performance analysis of network i/o workloads in virtualized

data centers,” Services Computing, IEEE Transactions on, vol. 6, no. 1, pp. 48–63, 2013.

8. G. Reig and J. Guitart, “On the anticipation of resource demands to fulfill the qos of saas web applications,”

in Grid Computing (GRID), 2012 ACM/IEEE 13th International Conference on, sept. 2012, pp. 147 –154.

9. Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource scaling for multi-tenant cloud

systems,” in Proceedings of the 2nd ACM Symposium on Cloud Computing, ser. SOCC ’11. New York, NY,
USA: ACM, 2011, pp. 5:1–5:14. [Online]. Available: http://doi.acm.org/10.1145/2038916.2038921

10. “Scalr Cloud Management,” 2013. [Online]. Available: http://scalr.com/

11. “Amazon Auto Scaling,” 2013. [Online]. Available: http://aws.amazon.com/

12. R. R. Nikolas Roman Herbst, Samuel Kounev, “Elasticity in cloud computing: What it is, and what it is not,” in

ICAC 2013, To be published, 2013.

http://dx.doi.org/10.1109/Grid.2012.10
http://doi.acm.org/10.1145/2038916.2038921
http://scalr.com/
http://aws.amazon.com/autoscaling/

